ABSTRACT: This paper describes how numerical modelling based on a discrete element formulation has been employed to simulate the response of masonry to seismic loading. Using dynamic non-linear numerical analysis the performance of shear walls with and without retrofitted strengthening has been compared. Models representative of ashlar masonry laid with a weak lime-based mortar have been investigated. In general, wall arrangements are typical of those forming the end elevations of conventionally constructed low-rise buildings loaded horizontally. Walls including idealised openings have also been investigated. The benefits of strengthening by the introduction of passively stressed reinforcement are predicted for various arrangements when subjected to seismic loading. The reinforcement is represented explicitly in the analysis allowing direct assessment of damage and potential failure mechanisms. It is concluded that, although more work is required to verify simulations against tests and field experiences, the discrete element technique is ideally suited to dynamic masonry simulation and overcomes many difficulties experienced with traditional finite element analysis. The overall performance of masonry acting compositely with retrofitted reinforcement has been predicted and comparisons made between different reinforcement dispositions. It has also been shown that unless carefully placed reinforcement may actually reduce seismic resistivity.
1 INTRODUCTION

Most of the invaluable historical buildings around the world are made of masonry. Assessment and subsequent strengthening of these structures against seismic forces requires the use of suitable numerical methods, which could model cracks and other discontinuities, realistically predict new cracks and simplify evaluation of different strengthening options.

The numerical modelling of these structures is fraught with difficulty. Discontinuities, such as cracks during the loading events or as a result of loading history, have to be wholly or partly predetermined when a standard finite element approach is used. The use of gap elements allows cracks to open and maintain normal and shear force connection when closed but the crack locations have to be known in advance. Another approach is to avoid explicit representation of discontinuities but instead smear their effect by using a brittle non-linear material model. However, these models fail to predict mechanisms where, for example, initially isolated parts react dynamically together. Continuum based methods can give satisfactory results but generally fail to provide a practical method of analysis for masonry structures.

As an alternative to the traditional finite element continuum approach, a discrete element (DE) formulation has been employed to simulate masonry with and without strengthening. So far the results of the analyses have been applied to parts of buildings and used to help develop remedial design philosophies by providing simulations under specific ground excitations. A separate project where the engineering analysis has been based on the DE technique has involved the successful strengthening of over thirty masonry arches in the United Kingdom and United State of America. Predictive verification of full-scale tests underlies this work and has involved calculated collapse loads of masonry arch bridges as well as supplementary load tests on in-service bridges. Results have been shown to correlate very closely with tests (Brookes, Tilly 1999). As the technique is developed it is hoped that the performance of whole buildings can be checked before strengthening systems have been installed.

2 ANALYTICAL REQUIREMENTS

In order to represent masonry with or without retrofitted reinforcement, particularly in seismic engineering where non-linear structural performance defines how ductility and energy absorption characteristics are exhibited, the following types of fundamental behaviour need to be included in the model.

i) Material and geometric properties of the masonry blocks.

ii) Contact-gap-friction effects along the joints between the masonry blocks.

iii) Depending on block and joint properties, the ability to evolve further joints by fracturing which in turn depends on limiting tensile strength and fracture energy.

iv) Full account of stiffness and derived inertia loads which may occur over very short time intervals.

v) The capability to model post-failure behaviour to verify simulations against the evidence collected after observed seismic damage and collapse.

vi) To allow stress and initial damage from previous seismic events to be included.

vii) The ability to represent retrofitted reinforcement including material non-linear behaviour of the steel and the non-linear shear coupling behaviour of the bond with the surrounding masonry.

To date, most numerical simulations of masonry have been based on finite element continuum methods in which sophisticated and often-complex material models in conjunction with arrays of gap elements are used to account for the requirements listed above. A more intrinsically satisfactory approach for masonry is to base the analysis on a series of discrete elements. This numerically practical approach can be used to represent ranges of masonry from completely intact buildings to piles of random rubble.

3 DISCRETE ELEMENT TECHNIQUE

The technique used to perform all the analysis in this study is the discrete element (DE) method. This is a development of the distinct element method (Cundall, 1971) in which the concept of individual elements being separate and reacting with their neighbours by contact through friction/adhesion was first successfully applied to geotechnical and
granular flow problems. Here elements were considered rigid but later developments (Munjiza et al., 1995) included the addition of element deformations and fracturing, with some overlap with traditional finite element theory.

In the current investigation the DE formulation available in the explicit dynamic version of ELFEN (Rockfield Software Limited, 1998) has been used. Essentially three different approaches have been used for the non-linear analysis of masonry each requiring different modelling approaches.

Macro Blocks. The category where the joints between blocks have predominantly no strength and models the construction generally found in historic structures.

Brittle Material. This is where the masonry blocks and joints have predominantly similar strengths, as is more likely in modern forms of construction or where masonry is weak and random.

Brittle Macro Blocks. Here the macro block approach is used with brittle materials thus permitting a blocky representation to fracture into further parts.

The first two approaches have been investigated for shear wall applications to investigate the sensitivity of seismic resistivity to mortar properties (Brookes, Mehrkar-Asl, 1998).

3.1 Macro block

The macro block approach has been achieved by separately modelling each block or group of blocks in the structure and applying permanent static loads and seismic excitation to the base. Individual blocks of elements have defined elastic and plastic materials and are arranged to the required bond. All joints and therefore potential discontinuities are predefined and have friction parameters assigned. It is assumed that failure at joints always develops before blocks fail. However, the introduction of a von-Mises non-linear material model without hardening has been used to approximately represent block crushing thus giving a compressive stress cap. Material properties have been based on characteristic values determined for the masonry as a whole.

3.2 Brittle material

Where masonry includes high strength mortar or where the strength of blocks is low, a brittle non-linear material model has previously been used. Here the continuum becomes discretised due to evolving fractures in the blocks and possibly through joints. This is achieved in the analysis automatically using adaptive mesh algorithms. Using a Rankine material model, including fracture energy, newly generated cracks become contact surfaces requiring friction parameters to be assigned as for the macro block approach. However, for ancient ashlar walls with little or no mortar the macro block approach is preferred.

4 REINFORCEMENT REPRESENTATION

The finite element technique is used to model the reinforcement independently of the masonry using a partially constrained spar formulation (Roberts, 1999). Connection between the reinforcement and masonry models is achieved through non-linear bond elements. Modelling of reinforcement arrangements is completely automated without the need for topologically consistent element meshes thus accelerating the modelling process and permitting rapid comparison of designs. Currently, the capacity for reinforcement elements crossing masonry joints to generate transverse shearing strength or dowel effects is ignored. This is believed to be conservative.

5 SHEAR WALL INVESTIGATION

As part of the continuing development of Cintec anchor applications and the expansion of joint venture historic structure remedial projects Gifford and Partners with Cintec International Limited are undertaking limited studies to investigate how the seismic resistivity of low-rise masonry buildings might be improved (Cintec International Limited, 2000).

Cintec anchors are comprised of stainless steel bar(s), a grouting sock and an engineered grout. Installation is by precisely drilled holes using wet or dry diamond coring technology. The sock consists of a specially woven polyester fabric shaped into a tubular sleeve to fit the required hole diameter. The sock controls the volume of grout used and ensures good contact is achieved with the surrounding masonry. Presspec grout is used having similar characteristics to Portland Cement based products, contains graded aggregates and other constituents which, when mixed with water, produce a pumpable grout that exhibits good strength with no shrinkage. The size of the steel anchor, strength of grout and diameter of hole can be varied to provide the required design parameters and to provide good stiffness compatibility with the masonry. Design
parameters such as the bond strength between the grout and the masonry, which is often critical, are normally derived from static pullout tests. Figure 1 shows a diagrammatic Cintec anchor.

To date effort has concentrated on the detailed analysis of masonry shear walls, the primary structural element in masonry buildings, it being recognised that the out of plane behaviour of masonry panels has been the subject of much previous work (Key, 1998). These shear walls are described below. The main objectives of the analyses were to provide some comparison between the performance of the walls with and without strengthening and to continue to explore the potential of the DE technique including modelled reinforcement applied to masonry under dynamic loading. An on-going programme of strengthening projects using the DE method to predict the ultimate strength of masonry arches, including comparisons with full scale tests, has shown the technique to be very accurate and better than alternative analyses for the case of static loading. Further work involving the out of plane prediction of masonry wall behaviour under high-speed dynamic loads arising from blast is also encouraging.

![Figure 1. Typical installed Cintec Anchor](image)

5.1 Description

The masonry shear wall under investigation is shown in Figure 2. The wall is 6.15m wide, 6.76m high, has shallow foundations over rock and has been considered with and without a large opening in each storey. It forms the shorter side of the rectangular building shown in Figure 3 and supports two floors capable of behaving as diaphragms. The longer side walls (not explicitly modelled) partly support the floors, and have little out-of-plane shear resistance. Vertical body forces and imposed loads are supported uniformly by all of the external walls. Loads developed by horizontal seismic ground accelerations in the transverse direction of the building are resisted by in-plane forces in the side walls. One of these walls is the subject of the current investigation.

5.2 DE Model

Several plane stress DE models of a single side wall were developed incorporating the masonry blocks and slabs. The vertical loads and masses attributed to the slabs were modified to reflect mass and load transfer from the rest of the building. The wall is constructed from ashlar blocks, bedded on narrow and relatively weak lime-mortar.

Without full scale testing of part of the wall, uncertainties exist for most material parameters and indeed the modelling. Previously both macro block and brittle material masonry models were used to help characterise the walls behaviour (Brookes, Mehrkar-Asl, 1998). The focus of the work was the sensitivity of structural behaviour to equivalent friction of the mortar joints rather than the relative performance of different strengthening arrangements. In the current investigation masonry material parameters have been fixed and based on those most representative of the form of construction. Similarly macro block models have been used throughout so that the focus of the investigation is on the effectiveness of strengthening.

![Figure 2. Stone masonry shear wall details (all dimensions in mm)](image)
advantage in terms of accuracy and computational efficiency. Hence, each block may in reality include several squared stones. The floor slabs and foundation were defined as separate continuums with similar perimeter frictional properties to the blocks. It has been assumed that the floors and foundation are constructed such that their global behaviour is linear elastic. For example reinforced concrete slabs.

All models were developed within a solid modelling environment using DISPLAY3 (EMRC, 1999), translated using in-house software and imported from within the ELFEN pre-processor.

![Diagram of idealised building](image)

Figure 3. General arrangement of idealised building

5.3 Material Properties

Masonry material properties were based on those typical of well-built ashlar construction and using a weak calcareous sandstone laid with a lime based mortar. The strength and stiffness of the modelled blocks have been based on average composite values for the masonry treated as a whole. The contact and frictional behaviour of the mortar is modelled explicitly at the joints. Hence, it is not necessary to individually include the stiffness and strength of the joints or the stiffness and strength of the stone blocks. Table 1 summaries the material parameters used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone/lime masonry</td>
<td>Density</td>
<td>2200 kg/m³</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td></td>
<td>3.5 kN/mm²</td>
</tr>
<tr>
<td>Strength</td>
<td></td>
<td>5 N/mm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortar joints</th>
<th>Coefficient of friction (μ)</th>
<th>Cohesion</th>
<th>Adhesion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6</td>
<td>0.15 N/mm²</td>
<td>0</td>
</tr>
</tbody>
</table>

5.4 Loading

Hypothetical horizontal seismic loading based on a circular frequency of approximately 0.6 Hz and containing six shocks was derived and applied to all of the models as displacement functions at foundation level (Figure 4). Two magnitudes of this simplified motion have been used with peak accelerations of 0.15g and 0.3g.

Vertical accelerations were not considered due to the inherent inconsistencies in the distribution of mass that were required to simplify the problem to one of two dimensions. Horizontal motion results in a greater proportion of the effective mass being distributed to the two shear walls than that corresponding to vertical motion. All load-bearing walls resist vertical motion. However, whilst concurrent vertical motion has an influence on the overall behaviour of masonry shear walls, it is generally accepted that horizontal motion is critical.

![Graph](image)

Figure 4. Time history of input motions

5.5 Strengthening

Both the plain wall and wall with openings were modified to include various arrangements of strengthening. Proposed dispositions of reinforcement included horizontal through individual block courses, vertical at the ends of the wall and end diagonal. Combinations of these patterns have also been considered. The reinforcement is fully bonded along its length.

The reinforcement is introduced into the wall using the Cintec anchor system. All dispositions of reinforcement investigated used single 20mm diameter ribbed bars installed in 50mm diameter
holes. The anchors are designed not to be deliberately stressed but attract load during a seismic event. The modelled anchors permit recovery of bond stresses, axial stresses and slippage along the length of the anchor at any time during loading.

Table 2 shows the various arrangements of wall and reinforcement that were the subject of the investigation. Figure 6 shows a typical model including DE boundaries (bold), finite element subdivisions (fine) and modelled reinforcement (bold).

Table 2. Wall and strengthening arrangements

<table>
<thead>
<tr>
<th>Arrangement No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,12</td>
<td>Plain wall. Also plain friction and 0.3g loading investigated.</td>
</tr>
<tr>
<td>14</td>
<td>Horizontal reinforcement at the centre of the first storey. Also plain friction investigated.</td>
</tr>
<tr>
<td>3,11</td>
<td>Horizontal reinforcement at the centre of the second storey</td>
</tr>
<tr>
<td>4</td>
<td>Horizontal reinforcement at the centre of the first storey and the centre of the second storey</td>
</tr>
<tr>
<td>5</td>
<td>Diagonal reinforcement at the ends of the first storey</td>
</tr>
<tr>
<td>7</td>
<td>Diagonal reinforcement at the ends of the second storey</td>
</tr>
<tr>
<td>13</td>
<td>Combination of diagonal and horizontal reinforcement. Bottom reinforcement in second layer of blocks</td>
</tr>
<tr>
<td>19</td>
<td>Combination of diagonal and horizontal reinforcement. Bottom reinforcement in first layer of blocks</td>
</tr>
<tr>
<td>20</td>
<td>Bottom reinforcement, vertical and horizontal reinforcement. Also 0.3g loading investigated</td>
</tr>
<tr>
<td>21</td>
<td>Combination of diagonal, vertical and horizontal reinforcement. Bottom reinforcement in first layer of blocks</td>
</tr>
<tr>
<td>22</td>
<td>Wall with openings in each storey</td>
</tr>
<tr>
<td>23</td>
<td>Combination of diagonal, vertical and horizontal reinforcement. Bottom reinforcement in first layer of blocks. Also 0.3g loading investigated</td>
</tr>
<tr>
<td>24</td>
<td>Combination of diagonal, vertical and horizontal reinforcement. Bottom reinforcement in first layer of blocks. Also 0.3g loading investigated</td>
</tr>
</tbody>
</table>

6 DISCUSSION OF RESULTS

Chiefly, DE simulations were carried out to show how the strength and ductility of the walls varied with reinforcement arrangement. However, for the plain wall and the wall with reinforcement arrangement No. 3 mortar with cohesion, which is considered to be most probable, and without cohesion has been considered. This limited investigation into the influence of mortar properties was carried out to allow comparisons to be made with simpler earlier work. Where walls have exhibited a high degree of seismic resistivity an additional ground motion with peak accelerations of 0.3g have been applied. The results have been illustrated by arrays of contour diagrams in which, the friction behaviour in the joints, the magnitude of ground motion and the position of reinforcement have been varied.

6.1 Unstrengthened simulations

Figure 7 illustrates compressive stresses and deformed geometry half way through the seismic event (time 5.2s) and after ground motion has ceased (time 12.5s). The shaded contours range between 2.2 N/mm² (dark) and -0.2 N/mm².

<table>
<thead>
<tr>
<th>Halfway through event</th>
<th>After event</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Vertical reinforcement at the ends of the wall</td>
</tr>
<tr>
<td>13</td>
<td>Combination of diagonal and horizontal reinforcement. Bottom reinforcement in second layer of blocks</td>
</tr>
<tr>
<td>19</td>
<td>Combination of diagonal and horizontal reinforcement. Bottom reinforcement in first layer of blocks</td>
</tr>
<tr>
<td>20</td>
<td>Bottom reinforcement, vertical and horizontal reinforcement. Also 0.3g loading investigated</td>
</tr>
<tr>
<td>22</td>
<td>Wall with openings in each storey</td>
</tr>
<tr>
<td>23</td>
<td>Combination of diagonal, vertical and horizontal reinforcement. Bottom reinforcement in first layer of blocks</td>
</tr>
<tr>
<td>24</td>
<td>Combination of diagonal, vertical and horizontal reinforcement. Bottom reinforcement in first layer of blocks. Also 0.3g loading investigated</td>
</tr>
</tbody>
</table>
Plain wall (No.2) – Maximum acceleration 0.15g

Plain wall (No.14) – Maximum acceleration 0.3g

Wall with openings (No.22) – Maximum acceleration 0.15g

Figure 7. Unstrengthened walls
(Contours of principal compressive stresses)

It has been theoretically shown that the predicted ductility of the walls is highly sensitive to the properties of the joints and the duration of the event (Brookes, Mehrkar-Asl, 1998). Furthermore, the inherited damage history from preceding shocks increases the seismic vulnerability of the wall. As part of the current investigation the influence of openings is also considered with the aim of developing an arrangement of reinforcement that works equally well for plain walls as well as those with openings. At the level of the idealised openings, representing smeared windows and doors, approximately 36% of the wall is removed. A lintel supports the wall remaining above each opening.

Figure 7 shows deformed principal compressive stress contours halfway through the event and after the event for the plain wall with (No.22) and without openings (No.2). The plain wall is also loaded with a 0.3g ground motion. After the 0.15g events the plain wall remains relatively undamaged with cracking in both storeys. The cracks in the second storey result in significant dilation across the wall whereas the cracks in the first storey are less dilated and are associated with locked in stresses. Doubling the acceleration results in massive damage. With much less masonry capable of resisting shear, the wall with openings is severely damaged after three shocks and collapses before the end of the event.

The results show the general behaviour as well as the initiation of cracking. Cracking is marked by sudden stress discontinuities as well as the relative movement of blocks. This movement develops rapidly into local failure mechanisms when subjected to continued shocks in the hypothetical seismic event. The predicted failure and local collapse, reflecting modelled ductility and energy absorption, is similar to damage frequently sustained in seismic regions. Hence, these three models have been used as the benchmarks to compare the performance of various retrofitted reinforcement schemes.

6.2 Strengthened simulations

Dispositions of reinforcement that have been investigated including horizontal, vertical, diagonal at the ends of the wall and combined patterns.

Figure 8 shows stress and reinforcement slippage results obtained for horizontal reinforcement with (No.3) and without (No.11) cohesion effects included in the mortar. In the more realistic case with cohesion the introduction of reinforcement has resulted in more damage. Without cohesion but with $\mu=0.6$ remaining, less damage occurs and good correlation is obtained with earlier simulations (Brookes, Mehrkar-Asl, 1998). The following reasons are likely for this behaviour.

i) With cohesion, less energy is dissipated across the joints resulting in less structural damping.

ii) Increased shear capacity across joints provided by cohesion helps a rocking mechanism develop in the wall. This mechanism causes sudden vertical oscillations of the wall above the reinforcement level resulting in additional damage.

Axial slippage of reinforcement in excess of 5mm indicates that bond with the masonry has failed. The graphs show progressive bond failure at both ends of the reinforcement. As with the masonry, less damage occurs to the reinforcement when no cohesion is considered.
Plain wall (No.2) – Friction with cohesion
Halfway through event

After event

Axial slippage of reinforcement
(Ordinate – slippage [mm], Abscissa – relative position)

fail

fail

Plain wall (No.11) – Simple friction

Axial slippage of reinforcement
(Ordinate – slippage [mm], Abscissa – relative position)

fail

fail

Maximum acceleration 0.15g

Diagonal (No.7)

Vertical (No 6)

Diagonal and horizontal
(No.13)

Diagonal and horizontal
(No.19)

Figure 9. Diagonal, vertical, horizontal reinforcement
(Contours of principal compressive stresses)

Results obtained from schemes with the most developed dispositions of reinforcement combining diagonal, vertical and horizontal bars are shown in Figure 10. Here similar schemes have been applied to both the plain wall and the wall with openings. It is similar to No.19 except that the bottom horizontal reinforcement lies in the bottom course of blocks. This helps eliminate vertical motion caused by rocking of the blocks below the reinforcement level.

The plain wall remains intact throughout the seismic event with the reinforcement controlling the development of cracking. Even under 0.3g loading, although higher locked in stresses are predicted little damage is evident. Without reinforcement, blocks left unarrested rapidly propagate failure mechanisms leading to collapse.

In both walls the reinforcement, apart from directly supporting the ends of the walls, has encouraged shearing at the foundation level creating an energy absorbing process as well as offering some degree of base isolation.

In Figure 9 the results at the end of the event are given for different reinforcement arrangements. All schemes except for No.19 and No.8 (not shown) cause either more damage to the masonry or produce higher locked in stresses compared with the similar unstrengthened wall. Arrangement No.19 has marginally improved resistance and prevented any blocks from falling away from the wall. In the case of No.13 an oscillatory mechanism develops above the first storey horizontal reinforcement causing increased damage by vertical movement.
7 CONCLUSIONS

Numerical models have been developed that have allowed rapid evaluation of the relative performance of reinforcement based retrofitted strengthening in masonry structures. This has been achieved by combining the discrete element technique with a finite element formulation for reinforcement. The process has been illustrated using a plane shear wall subjected to simplified hypothetical ground movements. The following conclusions have been drawn.

i) The overall performance of masonry acting compositely with retrofitted reinforcement can be predicted.

ii) The sensitivity of seismic resistivity to the disposition of reinforcement has been determined thereby allowing the comparison of practically viable schemes.

iii) A disposition of reinforcement has been investigated that improves seismic resistance and that works equally well for walls with and without openings.

iv) The results have also shown that retrofitted reinforcement unless carefully placed may actually reduce seismic resistivity.

The development of strengthening schemes for masonry structures would have been extremely difficult and costly using conventional finite element analysis or testing. However, to be completely confident that the results obtained by the numerical simulations presented in this paper are correct further work is required to verify the simulations against observed behaviour of masonry structures subjected to seismic loading.

8 REFERENCES

Engineering and Mechanics Research Corporation 1999. DISPLAY3 version 9.0 production. Troy, Michigan, USA.

