Basic Questions

- When does it happen?
- What are the consequences?
- How to predict it?
- How to compensate it?
- Other considerations.
When does it happen?

- Height of the building
- Construction sequence
- Difference in axial stress
- Difference in cross sectional shapes
- Reinforcement quantities
What are the consequences?

- Differential shortening between core & columns.
- Distortion of slab
- Redistribution of vertical loads
- Additional moments in the slab
- Effects on non-load bearing elements such as Partitions, cladding, finishes & piping
How to predict it?

- Estimated axial load in vertical elements based on uncracked section properties for all the elements
- Construction Sequence is assumed
- Material properties of concrete Elastic Modulus, ultimate shrinkage and specific creep (use experimental values if not then use codified values)
- Methods to estimate strength gain of concrete, shrinkage and creep with time
- Use Mark Fintel et al to calculate shortening
- Difference between core and columns is shortening of columns
How to compensate it?

- At design stage try to balance the loads (equal stresses in core and columns)

- During construction phase:
 - Composite or steel framing
 - For columns with steel cross sections either fabricate them longer or use site steel shims
 - Alternatively put the beam connection points in the core at a lower level
 - For concrete frame columns adjust formwork to the required length
Other Considerations

- Additional effects
 - Wind loading
 - Temperature effects
 - Differential foundation movements
- Performance Criteria
- Material Testing
Elastic Shortening

Up to Casting of Solution-Floor Level (denoted by subscript \(p \))

\[
\Delta_{1,p}^e = \sum_{j=1}^{N} \sum_{l=j}^{N} \frac{P_i h_j}{A_{1,ij} E_{ct,ij}}
\]

with

\[
E_{ct,ij} = 33 \cdot w^{1.5}/f'_{ct,ij}
\]

\[
f'_{ct,ij} = \frac{f'_{c,f}(t_i - t_j)}{4.0 + 0.85(t_i - t_j)}
\]

and

\[
A_{t,ij} = A_{g,ij} + A_{s,ij}(m_{ij} - 1)
\]

\[
m_{ij} = \frac{E_s}{E_{ct,ij}}
\]

Subsequent to Casting of Solution-Floor Level (denoted by subscript \(s \))

\[
\Delta_{1,s}^e = \sum_{j=1}^{N} \sum_{l=N+1}^{n} \frac{P_i h_j}{A_{1,ij} E_{ct,ij}}
\]
Ec of High Strength Concrete

- For normal strength concrete of
 - \(Ec = 33 \, w^{1.5} \sqrt{f'c} \) about \(57,000 \sqrt{f'c} \)
 - \(w \) in \(\text{lb/ft}^3 \) = 145 \(\text{lb/ft}^3 \)
 - \(f'c \) in \(\text{psi} \) (valid to about 6,000 psi)
 - \(Ec \) in \(\text{psi} \)

- For high strength concrete
 - \(Ec = 3320 \sqrt{f'c} + 1.0 \times 10^6 \)
 - \(3,000 < f'c < 12,000 \, \text{psi} \)
Creep

Due to Initial Loads (denoted by subscript 1)

Up to Casting of Solution-Floor Level (denoted by subscript \(p\))

\[
\Delta_{t_{1,p}} = \sum_{j=1}^{N} \sum_{i,j} \frac{P_i CR_{LA,ij}}{A_{t,ij}} \cdot \epsilon_{c_{c,ij}} \cdot h_j \cdot CR_{VS,ij} \cdot CR_H \cdot CR_{t,ij} \cdot CR_{R,ij}
\]

(18)

where

\(CR_{LA,ij} = 2.3(t_i - t_f) - 0.25\) — from equation (7) (18a)

\(A_{t,ij}\) has been defined by equations (13a), (13a'), (13b), and (13b')

\(CR_{VS,ij} = \frac{0.044(v,s)_j + 0.934}{0.1(v,s)_j + 0.85}\) — from equation (8) (18b)

\(CR_H\) is given by equation (9)

\(CR_H = 1.40 - 0.01H\)

(9)

where \(H\) is the relative humidity in percent. Again, it is suggested that the average annual value of \(H\) should be used.

\[CR_{t,ij} = \frac{(t_N - t_f)^{0.6}}{10.0 + (t_N - t_f)^{0.6}}\] if \(t_N \geq t_f\)

\[= 0\] if \(t_N \leq t_f\)

— from equation (10) (18c)

and

\[CR_{R,ij} = \frac{1 - e^{-p_j m_{ij} \cdot \epsilon_{c_{c,ij}} \cdot E_{c,ij}}}{p_j \cdot \epsilon_{c_{c,ij}} \cdot E_s}\]

— from equation (11) (18d)

\[\epsilon_{c_{c,ij}} = \epsilon_{c_{c,ij}} \cdot CR_{LA,ij} \cdot CR_{VS,ij} \cdot CR_H\] (18d'')

\[p_j = A_{s,ij} / A_{g,ij}\] (18d''')

Subsequent to Casting of Solution-Floor Level

(denoted by subscript \(s\))

\[
\Delta_{t_{1,s}} = \sum_{j=1}^{N} \sum_{i,j} \frac{P_i \cdot CR_{LA,ij}}{A_{t,ij}} \cdot \epsilon_{c_{c,ij}} \cdot h_j \cdot CR_{VS,ij} \cdot CR_H \cdot (1 - CR_{t,ij}) \cdot CR_{R,ij}
\]

(19)
Specific Creep

Let $\epsilon_{c\infty}$ denote the specific creep (basic plus drying) of 6-in.-diameter (150-mm) standard cylinders ($v:s = 1.5$ in. or 38 mm) exposed to 40% relative humidity following about 7 days of moist-curing and loaded at the age of 28 days. In the absence of specific creep data for concretes to be used in a particular structure, the following likely values of $\epsilon_{c\infty}$ may be used:

$$\epsilon_{c\infty} = \frac{3}{f'_{c}} \text{ (low value) to } \frac{5}{f'_{c}} \text{ (high value)} \quad (6)$$

where $\epsilon_{c\infty}$ is in inch per inch per kip per square inch if f'_{c} is in ksi; or in inch per inch per pound per square inch if f'_{c} is in psi. The lower end of the proposed range is in accord with specific creep values suggested by Neville.\(^{(16)}\) The upper end agrees with laboratory data obtained by testing concretes used in Water Tower Place\(^{(7)}\) in Chicago, Illinois.

Low value = $1.5 \times 10^{-3}/f'_{c}$
High value = $2.1 \times 10^{-3}/f'_{c}$
f'_{c} in psi
Shrinkage

Up to Casting of Solution-Floor Level (denoted by subscript \(p \))

\[
\Delta^s_p = \sum_{j=1}^{N} h_j \cdot \epsilon_{s_{\infty},j} \cdot SH_{v:s,j} \cdot SH_H \cdot SH_{t,j} \cdot SH_{R,j} \quad (16)
\]

with

\[
SH_{v:s,j} = \frac{0.037(v:s)_j + 0.944}{0.177(v:s)_j + 0.734} \quad \text{—from equation (3)} \quad (16a)
\]

and

\[
SH_{t,j} = \frac{t_N - t_j - t'_j}{26.0e^{-0.36(v:s)_j} + (t_N - t_j - t'_j)} \quad \text{—from equation (5)} \quad (16b)
\]

where \(t'_j \) is the period of moist-curing of column \(j \), \(SH_{jH} \) is from equation (4), and \(SH_{R,j} \) (see equation 12) is defined as follows:

\[
SH_{R,j} = \sum_{i=j}^{n} CR_{R,ij} \quad \frac{n}{n - j + 1} \quad (16c)
\]

\(CR_{R,ij} \) is given by equation (18d).

Subsequent to Casting of Solution-Floor Level (denoted by subscript \(s \))

\[
\Delta^s_s = \sum_{j=1}^{N} h_j \cdot \epsilon_{s_{\infty},j} \cdot SH_{v:s,j} \cdot SH_H \cdot (1 - SH_{t,j}) \cdot SH_{R,j} \quad (17)
\]

\[
SH_H = 1.40 - 0.010H \text{ for } 40 \leq H \leq 80 \quad (4)
\]

\[
= 3.00 - 0.030H \text{ for } 80 \leq H \leq 100
\]
Attempts have been made in the past to correlate $\epsilon_{s, \infty}$ with parameters such as concrete strength. In view of experimental data now available,(7) it appears that no such correlation may in fact exist. The only possible correlation is probably that between $\epsilon_{s, \infty}$ and the water content of a concrete mix (Fig. 7). In the absence of specific shrinkage data for concretes to be used in a particular structure, the value of $\epsilon_{s, \infty}$ may be taken as between 500×10^{-6} in. per inch (low value) and 800×10^{-6} in. per inch (high value). The latter value has been recommended by ACI Committee 209.(2)
Subsequent Load

Elastic Shortening

Due to Subsequent Load Application(s) (denoted by subscripts 2, 3, and so on)

$$\Delta_e^2 = \sum_{j=1}^{N} \sum_{k} \frac{P_k \cdot h_j}{A_{i,k} \cdot E_{ci,kj}}$$ \hspace{1cm} (15)

with

$$E_{ci,kj} = 33 \cdot 1.5 \sqrt{\frac{f'_{ci,kj}}{f'_{cl,kj}}} \quad \text{— from equation (1)}$$ \hspace{1cm} (15a)

$$f'_{ci,kj} = \frac{f'_{ci}(t_k - t_j)}{4.0 + 0.85 (t_k - t_j)} \quad \text{— from equation (2)}$$ \hspace{1cm} (15a')

Creep

Due to Subsequent Load Application(s) (denoted by subscripts 2, 3, and so on)

$$\Delta_c^2 = \sum_{j=1}^{N} \sum_{k} \frac{P_k \cdot CR_{LA,kj} \cdot \epsilon_{\infty,j} \cdot h_j \cdot CR_{v,s,j}}{A_{i,kj}} \cdot CR_H \cdot CR_R,kj$$ \hspace{1cm} (20)
Rules of thumb for Total Shortening

- **Steel Columns**
 - Only Elastic Shortening about 1.5 to 2mm/floor

- **Concrete Columns**
 - Elastic Shortening about 0.5 to 0.8mm/ floor
 - Creep about 1 to 2 x Elastic Shortening
 - Shrinkage about 0.2 to 0.5 mm/ floor

- Overall very similar but happening at different times.
Al Mas Tower
160,000 sq.m
5B+3Podiums+60Floors+3Plants
71 levels
360m in Height
Office, retail & diamond exchange
Al Mas Tower
Al Mas Tower
Al Mas Tower
Al Mas Tower

- Elastic Shortening
- Long term effects (creep and shrinkage)
- Principles (effects before and after casting a slab)
 - Self compensating effects
 - Adjustments have to be made
- Theoretical methods
 - Paper by Mark Fintel, et al.
 - ACI 209
 - ACI 363
- Computer Programs
 - SMA program
Al Mas Tower - Core
Al Mas Tower - Column

Column 3TC3-1

Graph showing data for different columns.
Al Mas Tower

Differential Shortening

- Core Total
- Column Total
- Differential
Al Mas Tower

Controlling Factors:

- Column size/ length
- Concrete strength
- Conc. properties
- Member sizes
- Reinforcing amount
- Floor dead loads
- Superimposed loads
- Construction time
- Construction loads
- Humidity at curing
- Temperature